Module Name Advanced Inorganic Chemistry | . , , , , , , , , , , , , , , , , , , , | Modu | le | | | Module Code | | | | | | |---|--|--|---|--|---|--|------------------------|---|---------------------------------|--| | Advanced Module | | | | | AM-C-AC | | | | | | | Identification
Number | | Workload | Credit
Points | Term | | Offered Every | Start | | Duration | | | MN-C-A-AC | | 180 Hours | 6 CP | 1. – 3. | Semester | SuSe/WiSe | both | | 1 Semester | | | 1 | Course Types | | | Contact Time | | Private Study | te Study Planned (| | roup Size | | | | a) Lecture | | | 60 h | | 120 h | | 20-30 Students | | | | | b) Seminars | | | | | | | | | | | 2 | Module Objectives and Skills to be Acquired | | | | | | | | | | | | chemical properties of elements and their compounds, are able to apply and describe modern synthetic techniques and recognize / analyze chemical properties of solid materials, molecules and coordination compounds, are able to refer about challenging and advanced topics from different areas of modern inorganic chemistry, are able to perform an in-depth analysis of a specific publication to identify its relevant contents and to bring into context with other studies in this area, and to present the results in form of a brief presentation and discuss them with other students and docents. | | | | | | | | | | | 3 | Module Content Concise and comprehensive lectures on major areas of inorganic chemistry: Molecular chemistry of s- and p-block elements in context with modern bonding theories; Coordination chemistry including metal organic complexes: structure and bonding in metal complexes; typical reactions and properties; ligand exchange reactions, activation of ligands, electron transfer, optical and magnetic properties; application of metal complexes in analytics, materials, metal- organic homogeneous catalysis and bio-catalysis; Solid-state chemistry and chemistry of nanostructured materials: preparative solid-state chemistry, basic understanding of nanostructures, synthesis of nanomaterials, reactions in the gas phase (chemical transport (CV/CVT), physical and chemical vapor phase synthesis), reactions in solution (precipitation, colloids, sol-gel chemistry, solvo- and hydrothermal syntheses), reactions of metal-organic reagents in materials synthesis, precursor concept. | | | | | | | | | | | | | chemistry, gas phase reactions in | basic understan
(chemical transp
solution (precip | ding of oort (CV) oitation, | nanostructur
//CVT), phys
colloids, sol | es, synthesis of natical and chemical gel chemistry, sol | anom
vapo
lvo- a | aterials, read
r phase syntl
nd hydrother | ctions in the
hesis),
mal | | | 4 | Teach | chemistry, gas phase reactions in | basic understan
(chemical transp
solution (precip | ding of oort (CV) oitation, | nanostructur
//CVT), phys
colloids, sol | es, synthesis of natical and chemical gel chemistry, sol | anom
vapo
lvo- a | aterials, read
r phase syntl
nd hydrother | ctions in the
hesis),
mal | | | 4 | | chemistry, gas phase reactions ir syntheses) | basic understan
(chemical transp
solution (precip | ding of oort (CV
bitation,
etal-orga | nanostructur
//CVT), phys
colloids, sol | es, synthesis of natical and chemical gel chemistry, sol | anom
vapo
lvo- a | aterials, read
r phase syntl
nd hydrother | ctions in the
hesis),
mal | | | 4 | Lectu | chemistry, gas phase reactions ir syntheses) | basic understand
(chemical transposition)
a solution (precip
, reactions of me | ding of oort (CV
bitation,
etal-orga | nanostructur
//CVT), phys
colloids, sol | es, synthesis of natical and chemical gel chemistry, sol | anom
vapo
lvo- a | aterials, read
r phase syntl
nd hydrother | ctions in the
hesis),
mal | | | 6 | Type of Examination | | | | | | | |----|--|--|--|--|--|--|--| | | Written exam (after successful completion of the seminar) | | | | | | | | 7 | Credits Awarded | | | | | | | | | Passed written exam | | | | | | | | 8 | Compatibility with other Curricula | | | | | | | | | None | | | | | | | | 9 | Proportion of Final Grade | | | | | | | | | 6/114 | | | | | | | | 10 | Module Coordinator | | | | | | | | | Prof. Dr. U. Ruschewitz, Prof. Dr. S. Mathur, Prof. Dr. A. Klein, Prof. Dr. N. N., PD Dr. M. Prechtl | | | | | | | | 11 | Further Information | | | | | | | | | Literature as well as seminar topics will be provided via ILIAS . | | | | | | | | | | | | | | | |