
Module Name 
Programming in a Scientific Environment with C++

Type of Module
Advanced Module

Module Code
AM-PSE

Identification
Number

MN-CS-PSE

Workload

270 h

Credit
Points

9 CP

Term

1. - 3. Semester

Offered Every

SuSe

Start

Summer Term
only

Duration

1 Semester

1 Course Types
a) Lecture
b) Seminar
c) Exercise

Contact Time
30 h
15 h
15 h

Private Study
90 h
30 h
90 h

Planned Group Size
<20 Students

2 Module Objectives and Skills to be Acquired
Object Oriented Programming, Design Principles Classical Computers, Molecular Dynamics/Hartree-Fock
Implementation

3 Module Content
Part I (Lecture/Exercise)
- Introduction

 - Capabilities: »computers vs. humans«
 - Artificial »Intelligence«, Quantum Computing vs. classical programming
 - Programming paradigms, programming languages, Turing completeness
 - Interpreter, compiler, just in time compilation
 - Efficiency: language vs. algorithm vs. math
 - Why C++?

- First steps
 - »Hello world«
 - Error messages...
 - Variables and (builtin) types
 - Loops and if clauses
 - Expressions
 - Type safety, type propagation
 - Subroutines

- Templates: variable types (static polymorphism)
 - Function and class templates
 - Standard template library (STL) containers
 - vector, array, list, set, map, ...
 - Access, insert/delete complexities
 - Explicit and implicit instantiation
 - Algorithms and their complexities
 - Nesting of templates

- Idea of object orientation (OO)
 - 3 steps:

 - Group builtin types together to create new abstract types (data structures)
 - Group abstract types with methods
 - Introduce life cycle governing methods (constructors, destructors, ...)

 - Separation of interface and implementation
 - Introduction of custom operators
 - Access control
 - Inheritance
 - Virtual functions (dynamic polymorphism)
 - UML diagrams

- Programming 5. Technical issues
 - Organizing »large« projects

 - File splitting (header and implementation files)
 - Automatizing build process (make)
 - »Compiler« pipeline

 - Preprocessor, compiler, assembler, linker
 - Involved stages, files, and linker symbols

 - Interoperability with other languages
 - Floating point issues
 - Limits of computational power

 - Latency, bandwidth, caches
 - Basis linear algebra subroutines and their levels BLAS1-3
 - Cache overruns

4 Teaching Methods
Lecture, Practical exercises, autonomous experiments, journal creation

5 Prerequisites (for the Module)
Formal: None
With respect to the contents:
Basic Programming Skills

6 Type of Examination
Passed oral exam, testified written report; the quality of the report is also included in the grading of the
oral exam

7 Credits Awarded
The module is passed by passing an oral examination. The grade given for the module is equal to the
grade of the oral examination.

8 Compatibility with other Curricula
The course is part of the Master of Science Chemistry

9 Proportion of Final Grade

10 Module Coordinator
M. Hanrath

11 Further Information
teaching language: English

The Module is based on the Experimental Module of the MSc Chemistry. As such, it is designed as a
seven-week course with daily contact times.

