Type of Module					Module Code					
Advan	ced Modu	ıle			AM-PSE					
Identification Number MN-CS-PSE		Workload 270 h	Credit Points 9 CP	Term		Offered Every SuSe		Start Summer Term only		Duration 1 Semester
				1 3.	Semester					
1	a) Le b) Se	ecture eminar ercise		Conta 30 h 15 h 15 h	15 h		Private Study 90 h 30 h 90 h		Planned Group Siz	
2	Objec	Module Objectives and Skills to be Acquired Object Oriented Programming, Design Principles Classical Computers, Molecular Dynamics/Hartree-Follmplementation								

3 Module Content

Part I (Lecture/Exercise)

- Introduction
 - Capabilities: »computers vs. humans«
 - Artificial »Intelligence«, Quantum Computing vs. classical programming
 - Programming paradigms, programming languages, Turing completeness
 - Interpreter, compiler, just in time compilation
 - Efficiency: language vs. algorithm vs. math
 - Why C++?
- First steps
 - »Hello world«
 - Error messages...
 - Variables and (builtin) types
 - Loops and if clauses
 - Expressions
 - Type safety, type propagation
 - Subroutines
- Templates: variable types (static polymorphism)
 - Function and class templates
 - Standard template library (STL) containers
 - vector, array, list, set, map, ...
 - Access, insert/delete complexities
 - Explicit and implicit instantiation
 - Algorithms and their complexities
 - Nesting of templates
- Idea of object orientation (OO)
 - 3 steps:
- Group builtin types together to create new abstract types (data structures)
- Group abstract types with methods
- Introduce life cycle governing methods (constructors, destructors, ...)
- Separation of interface and implementation
- Introduction of custom operators
- Access control
- Inheritance
- Virtual functions (dynamic polymorphism)
- UML diagrams
- Programming 5. Technical issues
 - Organizing »large« projects
 - File splitting (header and implementation files)
 - Automatizing build process (make)
 - »Compiler« pipeline
 - Preprocessor, compiler, assembler, linker
 - Involved stages, files, and linker symbols
 - Interoperability with other languages
 - Floating point issues
 - Limits of computational power
 - Latency, bandwidth, caches
 - Basis linear algebra subroutines and their levels BLAS1-3

4	Teaching Methods Lecture, Practical exercises, autonomous experiments, journal creation					
5	Prerequisites (for the Module) Formal: None With respect to the contents: Basic Programming Skills					
6	Type of Examination Passed oral exam, testified written report; the quality of the report is also included in the grading of the oral exam					
7	Credits Awarded The module is passed by passing an oral examination. The grade given for the module is equal to the grade of the oral examination.					
8	Compatibility with other Curricula The course is part of the Master of Science Chemistry					
9	Proportion of Final Grade					
10	Module Coordinator M. Hanrath					
11	Further Information teaching language: English The Module is based on the Experimental Module of the MSc Chemistry. As such, it is designed as a seven-week course with daily contact times.					