Module Name ## **Population Genetics and Molecular Evolution** | Population Genetics and Molecular Evolution | | | | | | | | | | | |---|--|-----------|--------|------------------|--------------|----------------|---------------|-------------|---------------|------------------| | Type of | Modu | le | | | Module Code | | | | | | | Advanced Module AM-B-SM (C 1) | | | | | | | | | | | | | | Workload | Credit | Term | | Offered Every | | Start | | Duration | | Number | | | Points | | | | | Summer Term | | | | MN-B-SM (C
1) | | 360 Hours | 12 CP | 1. – 3. Semester | | SuSe, 1st half | | Only | | 7 weeks | | 1 | Course Types C | | | Conta | Contact Time | | Private Study | | Planned Group | | | a) Lectu | | ture | | 48 h | | | 96 h | Siz | | - | | b) Sen | | ninar | | 48 h | | | 127 h | | 16 Students | | | c) Exercise | | | 5 h | | | 36 h | | | | | | 2 | Module Objectives and Skills to be Acquired | | | | | | | | | | | | Students who successfully completed this module have acquired detailed knowledge on fundamental concepts and theoretical models in populatio genetics and molecular evolution. are able to measure, statistically evaluate and interpret genetic data and put these in the contex of molecular evolution. are skilled in the analysis of polymorphism data from natural populations and can independently | | | | | | | | | la la manulation | | | | | | | | | | | | is in population | | | | | | | | | | | | in the context | | | | | | | | | | | | ndependently | | | carry out small scientific projects related to the topic of the module. have learned how to present research results in oral and written form and to critically discuss scientific publications related to the topic of the module on a professional level. are able to transfer skills acquired in this module to other fields of biology. | 3 | Module Content | | | | | | | | | | | | Principles of population genetics, population genomics and molecular evolution Statistical tests of genetic data | | | | | | | | | | | | Mathematical modeling | | | | | | | | | | | | Intra- and interspecific comparative analyses of genome sequences Analysis of gene variant and expression data | | | | | | | | | | | | Work with polymorphism data (e.g., VCF file format and VCF-tools) | | | | | | | | | | | 4 | Teaching Methods | | | | | | | | | | | | Lectures; Practical/Lab (Project work); Seminar; Computer exercises; Guidance to independent
research; Training on presentation techniques in oral and written form | | | | | | | | | | | 5 | Prerequisites (for the Module) | | | | | | | | | | | | Formally: none | | | | | | | | | | | | Additional academic requirements: | | | | | | | | | | | | Good mathematical and quantitative skills are highly recommended. | | | | | | | | | | | 6 | Type of examination | | | | | | | | | | | | The final examination consists of three parts: 30 min oral examination about topics of the lectures (50 % of the total module mark), oral presentation (25 % of the total module mark) and seminar paper (weekly home work exercises, aggregate to 25 % of the total module mark) | | | | | | | | | | | 7 | Credits Awarded | | | | | | | | | | | | Regular and active participation; | | | | | | | | | | | | Each examination part at least "sufficient" (see appendix of the examination regulations for details) | | | | | | | | details) | | | None | | | | | | | | |--|--|--|--|--|--|--|--| | Proportion of Final Grade | | | | | | | | | 12/114 | | | | | | | | | Module Coordinator | | | | | | | | | Prof. Dr. Thomas Wiehe, | | | | | | | | | Further Information | | | | | | | | | Participating faculty: Dr. S. Laurent, Prof. Dr. M. Nothnagel, Dr. D. Valenzano, Prof. Dr. T. Wiehe | | | | | | | | | Literature: Information about textbooks and other reading material will be given on the ILIAS representation of the course | | | | | | | | | General time schedule: Weeks 1-6 (MonFri., approx. 4 hours contact time per day): Lectures, practical/lab, writing seminar paper (= weekly home work exercises) and preparation for the seminar talk held in week 6; Week 7 (MonFri.): Preparation for the oral examination | | | | | | | | | Note: The module contains hand-on laboratory work conducted by small groups of students and is taught in research laboratories. The module contains computer-based practicals/research as a main component. | | | | | | | | | | | | | | | | |